Introduction of the key concepts that underpin the chemical engineering discipline and their application to address global challenges. The course will introduce the chemical industry as the interface between natural resources (minerals, water, air, oil, agricultural products, etc.) and the wide range of higher value products (materials, energy, clean water, food, pharmaceuticals, etc.) utilized in our society and the challenges and opportunities for the industry as part of a sustainable future. The course will introduce four core concepts underpinning the discipline of chemical engineering: thermodynamics (driving force); transport phenomena (heat, mass, momentum); reaction kinetics (rates); and unit operations. Topics covered include: the control volume approach; material and energy balances; flux; and reaction yield and conversion, with applications to batch and continuous systems. The course will introduce the connections between these foundational concepts and how they relate to our understanding of chemical and biochemical systems at various scales. The laboratory will reinforce these key chemical engineering principles.