An introduction to dynamic systems and their control. Differential equation models of mechanical, electrical, and electromechanical systems. State variable form. Linearization of nonlinear models and transfer functions. Use of Laplace transform to solve ordinary differential equations. Conversion of models from state variable form to transfer function representation and vice versa. Block diagrams and their manipulation. Time response: transient analysis and performance measures. Properties of feedback control systems. Steady state tracking:the notion of system type. The concept of stability of feedback systems, Routh-Hurwitz stability criterion. Frequency response and stability in the frequency domain. Root locus. Bode and Nyquist plots and their use in feedback control design.