Courses

MIE550H1 - Advanced Momentum, Heat and Mass Transfer

Credit Value: 0.50
Hours: 38.4L

This course observes: conservation of mass, momentum, energy and species; diffusive momentum, heat and mass transfer; dimensionless equations and numbers; laminar boundary layers; drag, heat transfer and mass transfer coefficients; transport analogies; simultaneous heat and mass transfer; as well as evaporative cooling, droplet evaporation and diffusion flames.

Prerequisite: MIE313H1
Total AUs: 36.6 (Fall), 36.6 (Winter), 73.2 (Full Year)

MIE561H1 - Healthcare Systems

Credit Value: 0.50
Hours: 38.4L/25.6T

MIE 561 is a "cap-stone" course. Its purpose is to give students an opportunity to integrate the Industrial Engineering tools learned in previous courses by applying them to real world problems. While the specific focus of the case studies used to illustrate the application of Industrial Engineering will be the Canadian health care system, the approach to problem solving adopted in this course will be applicable to any setting. This course will provide a framework for identifying and resolving problems in a complex, unstructured decision-making environment. It will give students the opportunity to apply a problem identification framework through real world case studies. The case studies will involve people from the health care industry bringing current practical problems to the class. Students work in small groups preparing a feasibility study discussing potential approaches. Although the course is directed at Industrial Engineering fourth year and graduate students, it does not assume specific previous knowledge, and the course is open to students in other disciplines.

Total AUs: 48.8 (Fall), 48.8 (Winter), 97.6 (Full Year)

MIE562H1 - Scheduling

Credit Value: 0.50
Hours: 38.4L/25.6T

This course takes a practical approach to scheduling problems and solution techniques, motivating the different mathematical definitions of scheduling with real world scheduling systems and problems. Topics covered include: job shop scheduling, timetabling, project scheduling, and the variety of solution approaches including constraint programming, local search, heuristics, and dispatch rules. Also covered will be information engineering aspects of building scheduling systems for real world problems.

Prerequisite: MIE262H1
Total AUs: 48.8 (Fall), 48.8 (Winter), 97.6 (Full Year)

MIE563H1 - Analytic and Numerical Solution of Engineering PDEs

Credit Value: 0.50
Hours: 38.4L/25.6T

This course explores analytic and numerical solution techniques for heat/mass diffusion and vibration/wave equations. Emphasis is placed on intuitive derivation of these equations, and analytic solution techniques like separation of variations, eigenfunction expansions, Fourier analysis, integral transforms, coordinate transforms, and special functions. Numerical solutions are introduced via finite difference methods. A key learning outcome of this course is understanding the central role that analytic solutions play in developing intuition about engineering physics, and how this is a fundamental step in learning to verify, validate, and properly use advanced computational modelling tools.

Prerequisite: MIE230H1, MAT234H1, MIE334H1
Total AUs: 48.8 (Fall), 48.8 (Winter), 97.6 (Full Year)

MIE566H1 - Decision Making Under Uncertainty

Credit Value: 0.50
Hours: 38.4L/25.6T/25.6P

Methods of analysis for decision making in the face of uncertainty and opponents. Topics include subjective discrete and continuous probability, utility functions, decision trees, influence diagrams, bayesian networks, multi-attribute utility functions, static and dynamic games with complete and incomplete information, bayesian games. Supporting software.

Prerequisite: MIE231H1/MIE236H1 or equivalent
Total AUs: 61 (Fall), 61 (Winter), 122 (Full Year)

MIE567H1 - Dynamic & Distributed Decision Making

Credit Value: 0.50
Hours: 38.4L/25.6T

Fundamental concepts and mathematical frameworks for scientific sequential decision making in the presence of uncertainty. Utility theory, uncertainty modeling, theory of games, dynamic programming, and multi-agent system. Discussion of how the decision theories can be applied to design algorithms and processes for real-world cases.

Total AUs: 48.8 (Fall), 48.8 (Winter), 97.6 (Full Year)

MIN120H1 - Insight into Mineral Engineering

Hours: 51.2L/12.8T

A comprehensive introduction to the global minerals industry using international regulatory requirements as a thematic structure. Engineering applications together with current and emerging issues are emphasized throughout. Principal topics include: mineral resources in the economy; stakeholder concerns and responsible mining; mineral exploration; surface and sub‑surface mine development and operation; fundamentals of mineral processing; mineral industry finance.

Total AUs: 54.9 (Fall), 54.9 (Winter), 109.8 (Full Year)

MIN191H1 - Introduction to Mineral Engineering

Credit Value: 0.15
Hours: 12.8L

This is a seminar series that will introduce students to the community, upper-year experience, and core fields of Mineral Engineering. Seminar presenters will represent the major areas in Mineral Engineering and will also be drawn from an array of groups, including students, staff, faculty, and alumni. The format will vary and may include application examples, case studies, career opportunities, and research talks. The purpose of the seminar series is to provide first year students with some understanding of the various options within the Department to enable them to make educated choices as they progress through the program. This course will be offered on a credit/no credit basis.

Total AUs: 12.2 (Fall), 12.2 (Winter), 24.4 (Full Year)

MIN201H1 - Mineral Engineering Field Excursion

Credit Value: 0.20

A field-based course introducing students to mineral engineering activities in open pit and underground mines, and mineral processing plants. The course will provide essential contextual experience for later courses in years 2 to 4 of the program, as well as highlight the key role of mineral engineers in developing safe, economical, and sustainable solutions for extracting and processing natural mineral resources. A mine operation in Ontario will be visited which, depending on the site location, will require one or two overnight stays in the nearest town/city. The mine operation will provide all personal protective equipment (PPE) and will ensure that students receive comprehensive safety induction training before entering the operation. The course will run in the first week of September immediately following Labour Day.

Prerequisite: n/a
Corequisite: n/a
Exclusion: n/a
Recommended Preparation: n/a
Enrolment Limits: n/a
Total AUs: 0 (Fall), 0 (Winter), 0 (Full Year)

MIN225H1 - Introduction to the Resource Industries

Credit Value: 0.50
Hours: 38.4L/12.8T/25.6P

This course introduces the global resource industries in three parts. In Module 1, students learn about mineral resources in the economy, the origin of ore deposits, mineral exploration and processing techniques, land ownership and environmental issues. Engineering applications are emphasized. Exploration and development topics are investigated. Module 2 presents an introduction to modern mining engineering. The basics of both surface (open pit) and sub-surface mining is covered. Module 3 presents an introduction on the processing of mineral resources into metals. The course helps to develop communication skills through student presentations on current issues in the industry and through training in technical communications by faculty from the Engineering Communications Program. Training for AutoCad and an extensive communications module are provided in the laboratory section. Students will participate in a field trip to an operating mine.
*Only students enrolled in the Lassonde Mineral Engineering program are eligible to participate in the 2nd year field trip.

Total AUs: 54.9 (Fall), 54.9 (Winter), 109.8 (Full Year)

MIN250H1 - Surface Mining

Credit Value: 0.50
Hours: 38.4L/12.8T

Operational aspects of open pit mine design and mine planning. Topics will include: open pit design and pit optimization; long term and short term planning considerations; materials handling; equipment selection and optimization; industrial minerals production; mine safety and mine regulations; mining and the environment; mine personnel organization; ethics and professional issues. Pit dewatering, the location and stability of waste dumps and an examination of equipment cost and production statistics are also included.

Total AUs: 42.7 (Fall), 42.7 (Winter), 85.4 (Full Year)

MIN301H1 - Mineral Reserve and Mineral Resource Estimation

Credit Value: 0.50
Hours: 38.4L/12.8T

Introduction to Mineral Resource and Mineral Reserve Estimation is an advanced level course that focuses on the stages of a mineral resource and mineral reserve estimation program from assembling the database through to reporting under industry guidelines. Major course topics include: statistical analysis of sampling data, geologic interpretation and deposit models; mineral resources estimation approaches and methods, mineral reserve estimation, classification of resources and reserves, and reporting under regulatory standards and industry guidelines for professional practice.

Total AUs: 42.7 (Fall), 42.7 (Winter), 85.4 (Full Year)

MIN320H1 - Explosives and Fragmentation in Mining

Credit Value: 0.50
Hours: 38.4L/12.8T

Efficient drilling and blasting is important to successful mining in rock formations. This course studies the planning, design, and economics of rock blasting for a full range of surface and underground, mining and construction projects. Emphasis will be on optimization of fragmentation using blast geometry and those variables available to the field engineer. This course covers the selection of modern industrial explosives, their history, physical properties, and safe handling, including an introduction to the theory of detonation, and rock response. Safety procedures in storage and transportation will be studied along with the monitoring and control of blast side effects. A field trip is associated with this course.

Total AUs: 42.7 (Fall), 42.7 (Winter), 85.4 (Full Year)

MIN329H1 - Engineering Rock Mechanics

Credit Value: 0.50
Hours: 38.4L/12.8T/12.8P

This course introduces students to the fundamental concepts of rock mechanics and their application to rock engineering. The following rock mechanics topics are covered: stress and strain; in situ stress; intact rock strength; discontinuity geometry, strength and stiffness; rock mass behavious; anisotropy, heterogeneity and the size effect; rock mass classifcation schemes. Rock engineering topics include: rock excavation; rock stabilisation; instability mechanisms in foundationas and slopes; rock slope design methods; underground openings in discontinuous and continuous rocks; rock-support interaction; synopsis of numerical methods. Associated laboratory sessions involve stress measurement, core logging, compressive strength determination and index testing.

Exclusion: CIV529H1
Total AUs: 61 (Fall), 61 (Winter), 122 (Full Year)

MIN330H1 - Mining Environmental Management

Credit Value: 0.50
Hours: 38.4L/12.8T

This course provides an overview of the major aspects of mining environmental management from exploration, through design and development of the property, into operation, and final closure implementation. An applied approach is taken utilizing case studies and examples where possible. Participation and discussion is an integral part of the course. Topics include sustainable development, environmental impacts, designing for mitigation, environmental management systems and reclamation.

Total AUs: 42.7 (Fall), 42.7 (Winter), 85.4 (Full Year)

MIN350H1 - Mineral Economics

Credit Value: 0.50
Hours: 38.4L/12.8T

Course covers the evaluation of mineral projects, mining operations, and mining companies. Topics will include: discounted cash flow techniques including net present value (NPV), internal rate of return (IRR), net asset value (NAV); feasibility studies and due diligence reports; reserves and resources, data sources; metal prices and markets; cash flow modeling including revenue calculations, capital and operating costs, taxes, depreciation, inflation; risk and risk assessment, discount rates, red flags, checklists; financing. Guest lectures will provide industry insights into financing, fund raising, consulting, project control, and evaluation. There are two assignments: review of an annual report; due diligence report and net asset value calculation.

Prerequisite: CIV368H1/CME368H1
Total AUs: 42.7 (Fall), 42.7 (Winter), 85.4 (Full Year)

MIN351H1 - Underground Mining

Credit Value: 0.50
Hours: 38.4L/12.8T

Operational aspects of underground mine design and mine planning. Topics will include: underground mining methods for hard and soft rock; shaft sinking, hoisting and materials handling; equipment selection and optimization; mine safety and mine regulations; mine personnel organization; ethics and professional issues. Development and production costs associated with mining are an inherent aspect of this course.

Exclusion: MIN350H1
Total AUs: 42.7 (Fall), 42.7 (Winter), 85.4 (Full Year)

MIN400H1 - Geology Field Camp for Engineers

Credit Value: 0.50

At Geology Field Camp, students will learn to incorporate geological observations into their engineering data sets. The course will focus on the recognition of rock types in the field, mapping of geological structures related to mineralization of potential economic importance, and field measurement techniques for obtaining rock engineering data. Students will learn how to make geological observations that are of critical importance to their success as mineral engineers, and to foster a sense of excitement and curiosity about the rocks that form the physical environment within which they will work as professionals. The course will be taught in the Sudbury region where there are several operating mines, numerous excellent field exposures of rocks related to the formation of the impact-related Sudbury structure, inexpensive accommodations, as well as unrelated older rock sequences typical of Archean greenstone belts where much of Canada's mineral exploration takes place. Students attend the two week Geology Field Camp prior to the start of Fourth Year Fall Session.

Prerequisite: GLG207H1, GLG345H1, MIN429H1
Total AUs: 47.2 (Fall), 47.2 (Winter), 94.4 (Full Year)

MIN401H1 - Mineral Reserve and Mineral Resource Estimation

Credit Value: 0.50
Hours: 38.4L/12.8T

Introduction to Mineral Resource and Mineral Reserve Estimation is an advanced level course that focuses on the stages of a mineral resource and mineral reserve estimation program from assembling the database through to reporting under industry guidelines. Major course topics include: statistical analysis of sampling data, geologic interpretation and deposit models; mineral resources estimation approaches and methods, mineral reserve estimation, classification of resources and reserves, and reporting under regulatory standards and industry guidelines for professional practice.

Total AUs: 42.7 (Fall), 42.7 (Winter), 85.4 (Full Year)

MIN430H1 - Mining Environmental Management

Credit Value: 0.50
Hours: 38.4L/12.8T

This course provides an overview of the major aspects of mining environmental management from exploration, through design and development of the property, into operation, and final closure implementation. An applied approach is taken utilizing case studies and examples where possible. Participation and discussion is an integral part of the course. Topics include sustainable development, environmental impacts, designing for mitigation, environmental management systems and reclamation.

Total AUs: 42.7 (Fall), 42.7 (Winter), 85.4 (Full Year)

MIN466H1 - Mineral Project Design I

Credit Value: 0.50
Hours: 25.6L/12.8T/25.6P

Mineral Project Design is a two-part capstone course that draws on all course materials developed in the first three years of the Mineral Engineering Curriculum. The course will culminate in the design of a mining or civil rock engineering project. In the first half of the course (F) students perform individual detailed case history analyses. Additional instruction in technical aspects of communication is provided during both semesters (preparing and writing technical reports, industry research and analysis, presentation skills, as well as other technical elements as required). These skills will form a foundation for students to use in industry. Critical non-technical aspects of rock engineering projects will also be examined, and guest speakers will present on specialized topics such as: cultural and social effects of rock engineering projects on communities and the environment; economic planning and impact; ethical considerations; aboriginal land claims, etc.. The social license to operate will be emphasized. Students will receive a final grade at the end of each term course, but both courses must be taken in sequence. (MIN 467H1 S cannot be taken without successful completion of MIN 466H1 F)

Prerequisite: MIN429H1, MIN350H1
Total AUs: 47.2 (Fall), 47.2 (Winter), 94.4 (Full Year)

MIN467H1 - Mineral Project Design II

Credit Value: 0.50
Hours: 12.8L/12.8T/51.2P

Mineral Project Design is a two-part capstone course that draws on all course materials developed in the first three years of the Mineral Engineering Curriculum. Part II (S) focuses on the design of a mining or civil rock engineering project. Students will be grouped into teams and provided with one or more data sets and a design problem to solve. The end product is a major engineering design report and oral presentation (including several interim reports and presentations). Technical aspects will serve to examine a "cradle to grave" view of a project, from initial planning through to final closure and site remediation. The course will include an intensive two-day Professional Supervisors Short Course. Topics include: Discovering a commonality among supervisors and their key role in maintaining standards. The importance of sharing information and expectations about costs, production goals and business objectives are explored in the context of motivation. The necessity of successful communication skills and techniques are discussed and demonstrated to achieve behaviours on the job, producing consistent results. A reliable methodology for handling difficult situations is provided. The fundamental rationale for safety and loss control is presented as well as a relevant perspective on management structure. A workable code of conduct that is a guide to professional behaviour is developed. Students will receive a final grade at the end of each term course, but both courses must be taken in sequence (MIN 467H1 S cannot be taken without successful completion of MIN 466H1 F)

Prerequisite: MIN466H1
Total AUs: 47.2 (Fall), 47.2 (Winter), 94.4 (Full Year)

MIN470H1 - Ventilation and Occupational Health

Credit Value: 0.50
Hours: 38.4L/12.8T

Hydraulics of air flow through underground openings is studied leading to mine ventilation design calculations and ventilation network analysis. Related topics discussed in the course include: statutory regulations and engineering design criteria; application and selection of ventilation fans; auxiliary fan design; air conditioning (heating and cooling); dust and fume control; ventilation economics. Health hazards related to mine gasses, dust and radiation along with relevant statutory requirements are reviewed. Air quality and quantity measurement and survey techniques are presented.

Prerequisite: CIV270H1/CME270H1
Total AUs: 42.7 (Fall), 42.7 (Winter), 85.4 (Full Year)

MIN511H1 - Integrated Mine Waste Engineering

Credit Value: 0.50
Hours: 38.4L/12.8T

The engineering design of conventional mine waste management systems, including tailings ponds, rock dumps, and underground mine backfill systems, is considered first. Emerging trends in integrated mine waste management systems, including paste stacking and "paste rock" on surface, and cemented paste backfill forunderground mining will then be covered. Engineering case studies will be used throughout, and each case study will be evaluated in terms of how the mine waste systems used contribute to the economic and environmental sustainability of the mining operation.

Prerequisite: CME321H1
Total AUs: 42.7 (Fall), 42.7 (Winter), 85.4 (Full Year)

MIN520H1 - Mine Optimization

Credit Value: 0.50
Hours: 38.4L/12.8P

Introduces principles and fundamental concepts involved in the optimization of different aspects of mineral resource extraction. Explores the key sources of uncertainty that affect a final mine plan and design such as orebody, technological and economic uncertainties. Stochastic simulation techniques will be introduced for the quantification of uncertainties and risk management.
Other topics related to optimizing mine production and performance such as delaying or eliminating waste stripping, and more efficient resource use through better blending and cut-off grade decisions, as well as holistic mine-to-mill process optimization will be introduced.

Prerequisite: MIN250H1, MIN351H1, MIN466H1
Total AUs: 42.7 (Fall), 42.7 (Winter), 85.4 (Full Year)

MIN540H1 - Borehole Geophysics for Engineers and Geoscientists

Credit Value: 0.50
Hours: 38.4L/12.8T

The process of wireline logging of boreholes for mineral, hydrocarbon and groundwater exploration, geotechnical and environmental studies involve a number of measurement devices, or sondes. Some of these are passive measurement devices; others exert some influence over the rock formation being traversed. Their measurements are transmitted to the surface by means of wire line. Logging applications include the identification of geological environment, reservoir fluid contact location, fracture detection, estimate of hydrocarbon or water in place, determination of water salinity, reservoir pressure determination, porosity/pore size distribution determination, and reservoir fluid movement monitoring.

Total AUs: 42.7 (Fall), 42.7 (Winter), 85.4 (Full Year)

MIN565H1 - Design and Support of Underground Mine Excavations

Credit Value: 0.50
Hours: 38.4L/12.8T

Geomechanical issues concerning the design of underground openings in hard rock are covered in the course: ground support [i.e. rock mass reinforcement] design, the dimensioning and sequencing of underground excavations and rock pillar design in hard rock applications. A review of modern concepts concerning rock and rock mass failure modes with application to support design is given. Both static and dynamic [rockburst] support design issues are addresses. Lastly instrumentation and monitoring techniques and backfill design and behaviour are also covered. Design issues are illustrated through the use of numerous field case studies .

Prerequisite: MIN429H1/CIV529H1
Total AUs: 42.7 (Fall), 42.7 (Winter), 85.4 (Full Year)

MSE120H1 - Materials Engineering, Processing and Application

Credit Value: 0.50
Hours: 38.4L/6.4T/12.8P

This course covers an introduction to the field of materials science and engineering following a design-led approach. Application areas such as stiffness-limited design, fracture-limited design, strength-limited design will be used to guide further investigations into elements of the processing-structure-properties-performance paradigm. Topics covered will include material property charts, computer-aided design and materials selection, crystallographic planes and directions, crystal structures, stiffness, strength, plasticity, yielding, ductility, fracture and fracture toughness, cyclic loading and fatigue, friction and wear, thermal properties of materials, electrical properties, optical properties, materials corrosion, and materials processing.

Total AUs: 45.8 (Fall), 45.8 (Winter), 91.6 (Full Year)

MSE160H1 - Molecules and Materials

Credit Value: 0.50
Hours: 38.4L/12.8T

This course will cover both the fundamentals and applications of molecular chemistry as it relates to the properties of materials. Fundamental topics will include: (1) the design of chemical structures and their relationship to optical and electronic properties; (2) the chemistry and physics of covalent and non-covalent bonding; (3) the relationship of atomic bonding to molecular geometry and local symmetry; (4) crystal structures of extended solids; and (5) extension of these principles to electronic structure, elasticity, and vector and tensor descriptions of materials properties. Applications to diverse areas of engineering will be discussed.

Exclusion: MSE101H1 or APS104H1
Recommended Preparation: CIV102H1
Total AUs: 42.7 (Fall), 42.7 (Winter), 85.4 (Full Year)

MSE191H1 - Introduction to Materials Science and Engineering

Credit Value: 0.15
Hours: 12.8L

This is a seminar series that will introduce students to the community, upper-year experience, and core fields of Materials Science and Engineering. Seminar presenters will represent the major areas in Materials Science and Engineering and will also be drawn from an array of groups, including students, staff, faculty, and alumni. The format will vary and may include application examples, case studies, career opportunities, and research talks. The purpose of the seminar series is to provide first year students with some understanding of the various options within the Department to enable them to make educated choices as they progress through the program. This course will be offered on a credit/no credit basis.

Total AUs: 12.2 (Fall), 12.2 (Winter), 24.4 (Full Year)